Week End Sale Special - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sntaclus

The Databricks workspace administrator has configured interactive clusters for each of the data engineering groups. To control costs, clusters are set to terminate after 30 minutes of inactivity. Each user should be able to execute workloads against their assigned clusters at any time of the day.

Assuming users have been added to a workspace but not granted any permissions, which of the following describes the minimal permissions a user would need to start and attach to an already configured cluster.

A.

"Can Manage" privileges on the required cluster

B.

Workspace Admin privileges, cluster creation allowed. "Can Attach To" privileges on the required cluster

C.

Cluster creation allowed. "Can Attach To" privileges on the required cluster

D.

"Can Restart" privileges on the required cluster

E.

Cluster creation allowed. "Can Restart" privileges on the required cluster

The data architect has decided that once data has been ingested from external sources into the

Databricks Lakehouse, table access controls will be leveraged to manage permissions for all production tables and views.

The following logic was executed to grant privileges for interactive queries on a production database to the core engineering group.

GRANT USAGE ON DATABASE prod TO eng;

GRANT SELECT ON DATABASE prod TO eng;

Assuming these are the only privileges that have been granted to the eng group and that these users are not workspace administrators, which statement describes their privileges?

A.

Group members have full permissions on the prod database and can also assign permissions to other users or groups.

B.

Group members are able to list all tables in the prod database but are not able to see the results of any queries on those tables.

C.

Group members are able to query and modify all tables and views in the prod database, but cannot create new tables or views.

D.

Group members are able to query all tables and views in the prod database, but cannot create or edit anything in the database.

E.

Group members are able to create, query, and modify all tables and views in the prod database, but cannot define custom functions.

Given the following error traceback:

AnalysisException: cannot resolve 'heartrateheartrateheartrate' given input columns:

[spark_catalog.database.table.device_id, spark_catalog.database.table.heartrate,

spark_catalog.database.table.mrn, spark_catalog.database.table.time]

The code snippet was:

display(df.select(3*"heartrate"))

Which statement describes the error being raised?

A.

There is a type error because a DataFrame object cannot be multiplied.

B.

There is a syntax error because the heartrate column is not correctly identified as a column.

C.

There is no column in the table named heartrateheartrateheartrate.

D.

There is a type error because a column object cannot be multiplied.

Where in the Spark UI can one diagnose a performance problem induced by not leveraging predicate push-down?

A.

In the Executor's log file, by gripping for "predicate push-down"

B.

In the Stage's Detail screen, in the Completed Stages table, by noting the size of data read from the Input column

C.

In the Storage Detail screen, by noting which RDDs are not stored on disk

D.

In the Delta Lake transaction log. by noting the column statistics

E.

In the Query Detail screen, by interpreting the Physical Plan

A data engineer is configuring a pipeline that will potentially see late-arriving, duplicate records.

In addition to de-duplicating records within the batch, which of the following approaches allows the data engineer to deduplicate data against previously processed records as it is inserted into a Delta table?

A.

Set the configuration delta.deduplicate = true.

B.

VACUUM the Delta table after each batch completes.

C.

Perform an insert-only merge with a matching condition on a unique key.

D.

Perform a full outer join on a unique key and overwrite existing data.

E.

Rely on Delta Lake schema enforcement to prevent duplicate records.

A Delta Lake table in the Lakehouse named customer_parsams is used in churn prediction by the machine learning team. The table contains information about customers derived from a number of upstream sources. Currently, the data engineering team populates this table nightly by overwriting the table with the current valid values derived from upstream data sources.

Immediately after each update succeeds, the data engineer team would like to determine the difference between the new version and the previous of the table.

Given the current implementation, which method can be used?

A.

Parse the Delta Lake transaction log to identify all newly written data files.

B.

Execute DESCRIBE HISTORY customer_churn_params to obtain the full operation metrics for the update, including a log of all records that have been added or modified.

C.

Execute a query to calculate the difference between the new version and the previous version using Delta Lake’s built-in versioning and time travel functionality.

D.

Parse the Spark event logs to identify those rows that were updated, inserted, or deleted.

A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Events are recorded once per minute per device.

Streaming DataFrame df has the following schema:

"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"

Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.

A.

to_interval("event_time", "5 minutes").alias("time")

B.

window("event_time", "5 minutes").alias("time")

C.

"event_time"

D.

window("event_time", "10 minutes").alias("time")

E.

lag("event_time", "10 minutes").alias("time")

A Structured Streaming job deployed to production has been resulting in higher than expected cloud storage costs. At present, during normal execution, each micro-batch of data is processed in less than 3 seconds; at least 12 times per minute, a micro-batch is processed that contains 0 records. The streaming write was configured using the default trigger settings. The production job is currently scheduled alongside many other Databricks jobs in a workspace with instance pools provisioned to reduce start-up time for jobs with batch execution. Holding all other variables constant and assuming records need to be processed in less than 10 minutes, which adjustment will meet the requirement?

A.

Set the trigger interval to 500 milliseconds; setting a small but non-zero trigger interval ensures that the source is not queried too frequently.

B.

Set the trigger interval to 3 seconds; the default trigger interval is consuming too many records per batch, resulting in spill to disk that can increase volume costs.

C.

Set the trigger interval to 10 minutes; each batch calls APIs in the source storage account, so decreasing trigger frequency to the maximum allowable threshold should minimize this cost.

D.

Use the trigger once option and configure a Databricks job to execute the query every 10 minutes; this approach minimizes costs for both compute and storage.

A CHECK constraint has been successfully added to the Delta table named activity_details using the following logic:

A batch job is attempting to insert new records to the table, including a record where latitude = 45.50 and longitude = 212.67.

Which statement describes the outcome of this batch insert?

A.

The write will fail when the violating record is reached; any records previously processed will be recorded to the target table.

B.

The write will fail completely because of the constraint violation and no records will be inserted into the target table.

C.

The write will insert all records except those that violate the table constraints; the violating records will be recorded to a quarantine table.

D.

The write will include all records in the target table; any violations will be indicated in the boolean column named valid_coordinates.

E.

The write will insert all records except those that violate the table constraints; the violating records will be reported in a warning log.

A Delta table of weather records is partitioned by date and has the below schema:

date DATE, device_id INT, temp FLOAT, latitude FLOAT, longitude FLOAT

To find all the records from within the Arctic Circle, you execute a query with the below filter:

latitude > 66.3

Which statement describes how the Delta engine identifies which files to load?

A.

All records are cached to an operational database and then the filter is applied

B.

The Parquet file footers are scanned for min and max statistics for the latitude column

C.

All records are cached to attached storage and then the filter is applied

D.

The Delta log is scanned for min and max statistics for the latitude column

E.

The Hive metastore is scanned for min and max statistics for the latitude column