Weekend Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sntaclus

A data engineer needs to securely transfer 5 TB of data from an on-premises data center to an Amazon S3 bucket. Approximately 5% of the data changes every day. Updates to the data need to be regularly proliferated to the S3 bucket. The data includes files that are in multiple formats. The data engineer needs to automate the transfer process and must schedule the process to run periodically.

Which AWS service should the data engineer use to transfer the data in the MOST operationally efficient way?

A.

AWS DataSync

B.

AWS Glue

C.

AWS Direct Connect

D.

Amazon S3 Transfer Acceleration

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling betweenone to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

An ecommerce company wants to use AWS to migrate data pipelines from an on-premises environment into the AWS Cloud. The company currently uses a third-party too in the on-premises environment to orchestrate data ingestion processes.

The company wants a migration solution that does not require the company to manage servers. The solution must be able to orchestrate Python and Bash scripts. The solution must not require the company to refactor any code.

Which solution will meet these requirements with the LEAST operational overhead?

A.

AWS Lambda

B.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

C.

AWS Step Functions

D.

AWS Glue

A company runs multiple applications on AWS. The company configured each application to output logs. The company wants to query and visualize the application logs in near real time.

Which solution will meet these requirements?

A.

Configure the applications to output logs to Amazon CloudWatch Logs log groups. Create an Amazon S3 bucket. Create an AWS Lambda function that runs on a schedule to export the required log groups to the S3 bucket. Use Amazon Athena to query the log data in the S3 bucket.

B.

Create an Amazon OpenSearch Service domain. Configure the applications to output logs to Amazon CloudWatch Logs log groups. Create an OpenSearch Service subscription filter for each log group to stream the data to OpenSearch. Create the required queries and dashboards in OpenSearch Service to analyze and visualize the data.

C.

Configure the applications to output logs to Amazon CloudWatch Logs log groups. Use CloudWatch log anomaly detection to query and visualize the log data.

D.

Update the application code to send the log data to Amazon QuickSight by using Super-fast, Parallel, In-memory Calculation Engine (SPICE). Create the required analyses and dashboards in QuickSight.

A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.

The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.

Which solution will meet this requirement?

A.

Update the AWS Glue security group to allow inbound traffic from the Amazon S3 VPC gateway endpoint.

B.

Configure an S3 bucket policy to explicitly grant the AWS Glue job permissions to access the S3 bucket.

C.

Review the AWS Glue job code to ensure that the AWS Glue connection details include a fully qualified domain name.

D.

Verify that the VPC's route table includes inbound and outbound routes for the Amazon S3 VPC gateway endpoint.

A data engineer needs to create an Amazon Athena table based on a subset of data from an existing Athena table named cities_world. The cities_world table contains cities that are located around the world. The data engineer must create a new table named cities_us to contain only the cities from cities_world that are located in the US.

Which SQL statement should the data engineer use to meet this requirement?

A.

Option A

B.

Option B

C.

Option C

D.

Option D

A company stores data in a data lake that is in Amazon S3. Some data that the company stores in the data lake contains personally identifiable information (PII). Multiple user groups need to access the raw data. The company must ensure that user groups can access only the PII that they require.

Which solution will meet these requirements with the LEAST effort?

A.

Use Amazon Athena to query the data. Set up AWS Lake Formation and create data filters to establish levels of access for the company's IAM roles. Assign each user to the IAM role that matches the user's PII access requirements.

B.

Use Amazon QuickSight to access the data. Use column-level security features in QuickSight to limit the PII that users can retrieve from Amazon S3 by using Amazon Athena. Define QuickSight access levels based on the PII access requirements of the users.

C.

Build a custom query builder UI that will run Athena queries in the background to access the data. Create user groups in Amazon Cognito. Assign access levels to the user groups based on the PII access requirements of the users.

D.

Create IAM roles that have different levels of granular access. Assign the IAM roles to IAM user groups. Use an identity-based policy to assign access levels to user groups at the column level.

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

A company hosts its applications on Amazon EC2 instances. The company must use SSL/TLS connections that encrypt data in transit to communicate securely with AWS infrastructure that is managed by a customer.

A data engineer needs to implement a solution to simplify the generation, distribution, and rotation of digital certificates. The solution must automatically renew and deploy SSL/TLS certificates.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Store self-managed certificates on the EC2 instances.

B.

Use AWS Certificate Manager (ACM).

C.

Implement custom automation scripts in AWS Secrets Manager.

D.

Use Amazon Elastic Container Service (Amazon ECS) Service Connect.

A data engineer must orchestrate a series of Amazon Athena queries that will run every day. Each query can run for more than 15 minutes.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

A.

Use an AWS Lambda function and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

B.

Create an AWS Step Functions workflow and add two states. Add the first state before the Lambda function. Configure the second state as a Wait state to periodically check whether the Athena query has finished using the Athena Boto3 get_query_execution API call. Configure the workflow to invoke the next query when the current query has finished running.

C.

Use an AWS Glue Python shell job and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

D.

Use an AWS Glue Python shell script to run a sleep timer that checks every 5 minutes to determine whether the current Athena query has finished running successfully. Configure the Python shell script to invoke the next query when the current query has finished running.

E.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the Athena queries in AWS Batch.