Weekend Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sntaclus

A data engineer wants to orchestrate a set of extract, transform, and load (ETL) jobs that run on AWS. The ETL jobs contain tasks that must run Apache Spark jobs on Amazon EMR, make API calls to Salesforce, and load data into Amazon Redshift.

The ETL jobs need to handle failures and retries automatically. The data engineer needs to use Python to orchestrate the jobs.

Which service will meet these requirements?

A.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

B.

AWS Step Functions

C.

AWS Glue

D.

Amazon EventBridge

A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.

Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.

Which solution will meet these requirements MOST cost-effectively?

A.

Use one AWS Glue job to replicate existing data. Use a second AWS Glue job to replicate future changes.

B.

Use AWS Database Migration Service (AWS DMS) to replicate existing data. Use AWS Glue jobs to replicate future changes.

C.

Use AWS Database Migration Service (AWS DMS) to replicate existing data and future changes.

D.

Use AWS Glue jobs to replicate existing data. Use Amazon Kinesis Data Streams to replicate future changes.

A company has a frontend ReactJS website that uses Amazon API Gateway to invoke REST APIs. The APIs perform the functionality of the website. A data engineer needs to write a Python script that can be occasionally invoked through API Gateway. The code must return results to API Gateway.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Deploy a custom Python script on an Amazon Elastic Container Service (Amazon ECS) cluster.

B.

Create an AWS Lambda Python function with provisioned concurrency.

C.

Deploy a custom Python script that can integrate with API Gateway on Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Create an AWS Lambda function. Ensure that the function is warm by scheduling an Amazon EventBridge rule to invoke the Lambda function every 5 minutes by using mock events.

A company uses Amazon S3 to store data and Amazon QuickSight to create visualizations.

The company has an S3 bucket in an AWS account named Hub-Account. The S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The company's QuickSight instance is in a separate account named BI-Account

The company updates the S3 bucket policy to grant access to the QuickSight service role. The company wants to enable cross-account access to allow QuickSight to interact with the S3 bucket.

Which combination of steps will meet this requirement? (Select TWO.)

A.

Use the existing AWS KMS key to encrypt connections from QuickSight to the S3 bucket.

B.

Add the 53 bucket as a resource that the QuickSight service role can access.

C.

Use AWS Resource Access Manager (AWS RAM) to share the S3 bucket with the Bl-Account account.

D.

Add an IAM policy to the QuickSight service role to give QuickSight access to the KMS key that encrypts the S3 bucket.

E.

Add the KMS key as a resource that the QuickSight service role can access.

A company receives .csv files that contain physical address data. The data is in columns that have the following names: Door_No, Street_Name, City, and Zip_Code. The company wants to create a single column to store these values in the following format:

Which solution will meet this requirement with the LEAST coding effort?

A.

Use AWS Glue DataBrew to read the files. Use the NEST TO ARRAY transformation to create the new column.

B.

Use AWS Glue DataBrew to read the files. Use the NEST TO MAP transformation to create the new column.

C.

Use AWS Glue DataBrew to read the files. Use the PIVOT transformation to create the new column.

D.

Write a Lambda function in Python to read the files. Use the Python data dictionary type to create the new column.

A company has a data processing pipeline that includes several dozen steps. The data processing pipeline needs to send alerts in real time when a step fails or succeeds. The data processing pipeline uses a combination of Amazon S3 buckets, AWS Lambda functions, and AWS Step Functions state machines.

A data engineer needs to create a solution to monitor the entire pipeline.

Which solution will meet these requirements?

A.

Configure the Step Functions state machines to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

B.

Configure the AWS Lambda functions to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

C.

Use AWS CloudTrail to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications when a state machine fails to run or succeeds to run.

D.

Configure an Amazon EventBridge rule to react when the execution status of a state machine changes. Configure the rule to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications.

A company uses Amazon Redshift as a data warehouse solution. One of the datasets that the company stores in Amazon Redshift contains data for a vendor.

Recently, the vendor asked the company to transfer the vendor's data into the vendor's Amazon S3 bucket once each week.

Which solution will meet this requirement?

A.

Create an AWS Lambda function to connect to the Redshift data warehouse. Configure the Lambda function to use the Redshift COPY command to copy the required data to the vendor's S3 bucket on a schedule.

B.

Create an AWS Glue job to connect to the Redshift data warehouse. Configure the AWS Glue job to use the Redshift UNLOAD command to load the required data to the vendor's S3 bucket on a schedule.

C.

Use the Amazon Redshift data sharing feature. Set the vendor's S3 bucket as the destination. Configure the source to be as a custom SQL query that selects the required data.

D.

Configure Amazon Redshift Spectrum to use the vendor's S3 bucket as destination. Enable dataquerying in both directions.

A mobile gaming company wants to capture data from its gaming app. The company wants to make the data available to three internal consumers of the data. The data records are approximately 20 KB in size.

The company wants to achieve optimal throughput from each device that runs the gaming app. Additionally, the company wants to develop an application to process data streams. The stream-processing application must have dedicated throughput for each internal consumer.

Which solution will meet these requirements?

A.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Use the enhanced fan-out feature with a stream for each internal consumer.

B.

Configure the mobile app to call the PutRecordBatch API operation to send data to Amazon Data Firehose. Submit an AWS Support case to turn on dedicated throughput for the company's AWS account. Allow each internal consumer to access the stream.

C.

Configure the mobile app to use the Amazon Kinesis Producer Library (KPL) to send data to Amazon Data Firehose. Use the enhanced fan-out feature with a stream for each internal consumer.

D.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Host the stream-processing application for each internal consumer on Amazon EC2 instances. Configure auto scaling for the EC2 instances.

A data engineer is configuring Amazon SageMaker Studio to use AWS Glue interactive sessions to prepare data for machine learning (ML) models.

The data engineer receives an access denied error when the data engineer tries to prepare the data by using SageMaker Studio.

Which change should the engineer make to gain access to SageMaker Studio?

A.

Add the AWSGlueServiceRole managed policy to the data engineer's IAM user.

B.

Add a policy to the data engineer's IAM user that includes the sts:AssumeRole action for the AWS Glue and SageMaker service principals in the trust policy.

C.

Add the AmazonSageMakerFullAccess managed policy to the data engineer's IAM user.

D.

Add a policy to the data engineer's IAM user that allows the sts:AddAssociation action for the AWS Glue and SageMaker service principals in the trust policy.

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.