Weekend Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sntaclus

A company has an AWS account with four VPCs in the us-east-1 Region. The VPCs consist of a development VPC and three production VPCs that host various workloads.

The company has extended its on-premises data center to AWS with AWS Direct Connect by using a Direct Connect gateway. The company now wants to establish connectivity to its production VPCs and development VPC from on premises. The production VPCs are allowed to route data to each other. However, the development VPC must be isolated from the production VPCs. No data can flow between the development VPC and the production VPCs.

In preparation to implement this solution, a network engineer creates a transit gateway with a single transit gateway route table. Default route table association and default route table propagation are turned off. The network engineer attaches the production VPCs. the development VPC. and the Direct Connect gateway to the transit gateway. For each VPC route table, the network engineer adds a route to 0.0.0.0/0 with the transit gateway as the next destination.

Which combination of steps should the network engineer take next to complete this solution? (Select THREE.)

A.

Associate the production VPC attachments with the existing transit gateway route table. Propagate the routes from these attachments.

B.

Associate all the attachments with the existing transit gateway route table. Propagate the routes from these attachments.

C.

Associate the Direct Connect gateway attachment with the existing transit gateway route table. Propagate the Direct Connect gateway attachment to this route table.

D.

Change the security group inbound rules on the existing transit gateway network interfaces in the development VPC to allow connections to and from the on-premises CIDR range only.

E.

Create a new transit gateway route table. Associate the new route table with the development VPC attachment. Propagate the Direct Connect gateway and developmentVPC attachment to the new route table.

F.

Create a new transit gateway with default route table association and default route table propagation turned on. Attach the Direct Connect gateway and development VPC to the new transit gateway.

A company is deploying a non-web application on an AWS load balancer. All targets are servers located on-premises that can be accessed by using AWS Direct Connect. The company wants to ensure that the source IP addresses of clients connecting to the application are passed all the way to the end server.

How can this requirement be achieved?

A.

Use a Network Load Balancer to automatically preserve the source IP address.

B.

Use a Network Load Balancer and enable the X-Forwarded-For attribute.

C.

Use a Network Load Balancer and enable the ProxyProtocol v2 attribute.

D.

Use an Application Load Balancer to automatically preserve the source IP address in the X-Forwarded-For header.

A company has business operations in the United States and in Europe. The company's public applications are running on AWS and use three transit gateways. The transit gateways are located in the us-west-2. us-east-1. and eu-central-1 Regions. All the transit gateways are connected to each other in a full mesh configuration.

The company accidentally removes the route to the eu-central-1 VPCs from the us-west-2 transit gateway route table. The company also accidentally removes the route to the us-west-2 VPCs from the eu-central-1 transit gateway route table.

How can a network engineer identify the misconfiguration with the LEAST operational overhead?

A.

Use the Route Analyzer feature for AWS Transit Gateway Network Manager

B.

Use the AWSSupport-SetuplPMonitoringFromVPC AWS Systems Manager Automation runbook. Push network telemetry data to Amazon CloudWatch Logs for analysis.

C.

Use VPC flow togs in eu-central-1 and us-west-2 to analyze the missing routes.

D.

Use Amazon VPC Traffic Mirroring in eu-central-1 or us-west-2 to take packet captures and troubleshoot the connectivity issues.

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

A company’s network engineer needs to design a new solution to help troubleshoot and detect network anomalies. The network engineer has configured Traffic Mirroring. However, the mirrored traffic is overwhelming the Amazon EC2 instance that is the traffic mirror target. The EC2 instancehosts tools that the company’s security team uses to analyze the traffic. The network engineer needs to design a highly available solution that can scale to meet the demand of the mirrored traffic.

Which solution will meet these requirements?

A.

Deploy a Network Load Balancer (NLB) as the traffic mirror target. Behind the NLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

B.

Deploy an Application Load Balancer (ALB) as the traffic mirror target. Behind the ALB, deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during non-business hours.

C.

Deploy a Gateway Load Balancer (GLB) as the traffic mirror target. Behind the GLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

D.

Deploy an Application Load Balancer (ALB) with an HTTPS listener as the traffic mirror target. Behind the ALB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during active events or business hours.

A company is building an internet-facing application that is hosted on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The company is using the Amazon VPC Container Network Interface (CNI) plugin for Kubernetes for pod networking connectivity. The company needs to expose its application to the internet by using a Network Load Balancer (NLB). The pods that host the application must have visibility of the source IP address that is contained in the original packet that the NLB receives.

How should the network engineer configure the NLB and Amazon EKS settings to achieve these goals?

A.

Specify the Ip target type for the NLB. Set the externalTrafficPolicy attribute to Local in the Kubernetes service specification.

B.

Specify the instance target type for the NLB. Set the externalTrafficPolicy attribute to Cluster in the Kubernetes service specification

C.

Specify the instance target type for the NLB. Set the externalTrafficPolicy attribute to Local in the Kubernetes service specification.

D.

Specify the Ip target type for the NLB. Set the externalTrafficPolicy attribute to Cluster in the Kubernetes service specification

A company has an application that runs on premises. The application needs to communicate with an application that runs in a VPC on AWS. The communication between the applications must be encrypted and must use private IP addresses. The communication cannot travel across the public internet.

The company has established a 1 Gbps AWS Direct Connect connection between the on-premises location and AWS.

Which solution will meet the connectivity requirements with the LEAST operational overhead?

A.

Configure a private VIF on the Direct Connect connection. Associate the private VIF with the VPC's virtual private gateway. Set up an AWS Site-to-Site VPN private IP VPN connection to the virtual private gateway.

B.

Create a transit gateway. Configure a transit VIF on the Direct Connect connection. Associate the transit VIF with a Direct Connect gateway. Associate the Direct Connect gateway with a new transit gateway. Set up an AWS Site-to-Site VPN private IP VPN connection to the transit gateway.

C.

Configure a public VIF on the Direct Connect connection. Associate the public VIF with a Direct Connect gateway. Associate the Direct Connect gateway with a new transit gateway. Set up an AWS Site-to-Site VPN private IP VPN connection to the transit gateway.

D.

Create a transit gateway. Configure a transit VIF on the Direct Connect connection. Associate the transit VIF with a Direct Connect gateway. Associate the Direct Connect gateway with a new transit gateway. Set up a third-party firewall in a new VPC that is attached to the transit gateway. Set up a VPN connection to the third-party firewall.

A company has stateful security appliances that are deployed to multiple Availability Zones in a centralized shared services VPC. The AWS environment includes a transit gateway that is attached to application VPCs and the shared services VPC. The application VPCs have workloads that are deployed in private subnets across multiple Availability Zones. The stateful appliances in the shared services VPC inspect all east-west (VPC-to-VPC) traffic.

Users report that inter-VPC traffic to different Availability Zones is dropping. A network engineer verified this claim by issuing Internet Control Message Protocol (ICMP) pings between workloads in different Availability Zones across the application VPCs. The network engineer has ruled out security groups, stateful device configurations, and network ACLs as the cause of the dropped traffic.

What is causing the traffic to drop?

A.

The stateful appliances and the transit gateway attachments are deployed in a separate subnet in the shared services VPC.

B.

Appliance mode is not enabled on the transit gateway attachment to the shared services VPC

C.

The stateful appliances and the transit gateway attachments are deployed in the same subnet in the shared services VPC.

D.

Appliance mode is not enabled on the transit gateway attachment to the application VPCs.

A company has started using AWS Cloud WAN with one edge location in the us-east-1 Region. The company has a production segment and a security segment in AWS Cloud WAN. The company also has a default core network policy.

The company has created a production VPC for the production workload. The company has created an outbound inspection VPC to inspect internet-bound traffic from the production VPC. The company has attached the production VPC to the production segment and has attached the outbound inspection VPC to the security segment. The company has also created an AWS Network Firewall firewall in the outbound inspection VPC to inspect internet-based traffic.

The company has updated a route table for the production VPC to send all internet-bound traffic to the AWS Cloud WAN core network. The company has updated a route table for the outbound inspection VPC to ensure that Network Firewall inspects any outgoing traffic and incoming traffic.

During testing, an Amazon EC2 instance in the production VPC cannot reach the internet. The company checks the Network Firewall rules and confirms that the rules are not blocking the traffic.

Which combination of steps will meet these requirements? (Choose two.)

A.

Update the core network policy to configure segment sharing. Share the production segment with the security segment.

B.

Update the core network policy to create a static route for the security segment. Specify 0.0.0.0/0 as the destination CIDR block. Specify the outbound inspection VPC as an attachment.

C.

Update the core network policy to create a static route for the production segment. Specify 0.0.0.0/0 as the destination CIDR block. Specify the outbound inspection VPC as an attachment.

D.

Update the core network policy to create a static route for the production segment.Specify 10.2.0.0/16 as the destination CIDR block. Specify the outbound inspection VPC as an attachment.

E.

Create an attachment to attach the outbound inspection VPC to the production segment. Update the core network policy to turn on isolated attachment for the production segment.

A company has AWS accounts in an organization in AWS Organizations. The company has implemented Amazon VPC IP Address Manager (IPAM)in its networking AWS account. The company is using AWS Resource Access Manager (AWS RAM) to share IPAM pools with other AWS accounts. The company has created a top-level pool with a CIDR block of 10.0.0.0/8. For each AWS account, the company has created an IPAM pool within the top-level pool.

A network engineer needs to implement a solution to ensure that users in each AWS account cannot create new VPCs. The solution also must prevent users from associating a CIDR block with existing VPCs unless the CIDR block is from the IPAM pool for that account.

Which solution will meet these requirements?

A.

Create a new AWS Config rule to find all VPCs that are not configured to allocate their CIDR block from an IPAM pool. Invoke an AWS Lambda function to delete these VPCs.

B.

Create a new SCP in Organizations. Add a condition that denies the CreateVpc and AssociateVpcCidrBlock Amazon EC2 actions if the lpv4lpamPoolld context key value is not the ID of an IPAM pool.

C.

Create an AWS Lambda function to check for and delete all VPCs that are not configured to allocate their CIDR block from an IPAM pool. Invoke the Lambda function at regular intervals.

D.

Create an Amazon EventBridge rule to check for AWS CloudTrail events for the CreateVpc and AssociateVpcCidrBlock Amazon EC2 actions. Use the rule to invoke an AWS Lambda function to delete all VPCs that are not configured to allocate their CIDR block from an IPAM pool.