An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.
The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.
Which solution will enable the company to achieve its goal with the LEAST operational overhead?
An insurance company developed a new experimental machine learning (ML) model to replace an existing model that is in production. The company must validate the quality of predictions from the new experimental model in a production environment before the company uses the new experimental model to serve general user requests.
Which one model can serve user requests at a time. The company must measure the performance of the new experimental model without affecting the current live traffic
Which solution will meet these requirements?
A machine learning (ML) engineer is using Amazon SageMaker automatic model tuning (AMT) to optimize a model's hyperparameters. The ML engineer notices that the tuning jobs take a long time to run. The tuning jobs continue even when the jobs are not significantly improving against the objective metric.
The ML engineer needs the training jobs to optimize the hyperparameters more quickly. How should the ML engineer configure the SageMaker AMT data types to meet these requirements?
A manufacturing company wants to create a machine learning (ML) model to predict when equipment is likely to fail. A data science team already constructed a deep learning model by using TensorFlow and a custom Python script in a local environment. The company wants to use Amazon SageMaker to train the model.
Which TensorFlow estimator configuration will train the model MOST cost-effectively?
A monitoring service generates 1 TB of scale metrics record data every minute A Research team performs queries on this data using Amazon Athena The queries run slowly due to the large volume of data, and the team requires better performance
How should the records be stored in Amazon S3 to improve query performance?
A data scientist stores financial datasets in Amazon S3. The data scientist uses Amazon Athena to query the datasets by using SQL.
The data scientist uses Amazon SageMaker to deploy a machine learning (ML) model. The data scientist wants to obtain inferences from the model at the SageMaker endpoint However, when the data …. ntist attempts to invoke the SageMaker endpoint, the data scientist receives SOL statement failures The data scientist's 1AM user is currently unable to invoke the SageMaker endpoint
Which combination of actions will give the data scientist's 1AM user the ability to invoke the SageMaker endpoint? (Select THREE.)
A manufacturing company asks its Machine Learning Specialist to develop a model that classifies defective parts into one of eight defect types. The company has provided roughly 100000 images per defect type for training During the injial training of the image classification model the Specialist notices that the validation accuracy is 80%, while the training accuracy is 90% It is known that human-level performance for this type of image classification is around 90%
What should the Specialist consider to fix this issue1?
A large company has developed a B1 application that generates reports and dashboards using data collected from various operational metrics The company wants to provide executives with an enhanced experience so they can use natural language to get data from the reports The company wants the executives to be able ask questions using written and spoken interlaces
Which combination of services can be used to build this conversational interface? (Select THREE)
A machine learning (ML) specialist uploads 5 TB of data to an Amazon SageMaker Studio environment. The ML specialist performs initial data cleansing. Before the ML specialist begins to train a model, the ML specialist needs to create and view an analysis report that details potential bias in the uploaded data.
Which combination of actions will meet these requirements with the LEAST operational overhead? (Choose two.)
A company wants to detect credit card fraud. The company has observed that an average of 2% of credit card transactions are fraudulent. A data scientist trains a classifier on a year's worth of credit card transaction data. The classifier needs to identify the fraudulent transactions. The company wants to accurately capture as many fraudulent transactions as possible.
Which metrics should the data scientist use to optimize the classifier? (Select TWO.)