A pharmaceutical company performs periodic audits of clinical trial sites to quickly resolve critical findings. The company stores audit documents in text format. Auditors have requested help from a data science team to quickly analyze the documents. The auditors need to discover the 10 main topics within the documents to prioritize and distribute the review work among the auditing team members. Documents that describe adverse events must receive the highest priority.
A data scientist will use statistical modeling to discover abstract topics and to provide a list of the top words for each category to help the auditors assess the relevance of the topic.
Which algorithms are best suited to this scenario? (Choose two.)
A large consumer goods manufacturer has the following products on sale
• 34 different toothpaste variants
• 48 different toothbrush variants
• 43 different mouthwash variants
The entire sales history of all these products is available in Amazon S3 Currently, the company is using custom-built autoregressive integrated moving average (ARIMA) models to forecast demand for these products The company wants to predict the demand for a new product that will soon be launched
Which solution should a Machine Learning Specialist apply?
A Data Scientist needs to create a serverless ingestion and analytics solution for high-velocity, real-time streaming data.
The ingestion process must buffer and convert incoming records from JSON to a query-optimized, columnar format without data loss. The output datastore must be highly available, and Analysts must be able to run SQL queries against the data and connect to existing business intelligence dashboards.
Which solution should the Data Scientist build to satisfy the requirements?
A credit card company wants to build a credit scoring model to help predict whether a new credit card applicant
will default on a credit card payment. The company has collected data from a large number of sources with
thousands of raw attributes. Early experiments to train a classification model revealed that many attributes are
highly correlated, the large number of features slows down the training speed significantly, and that there are
some overfitting issues.
The Data Scientist on this project would like to speed up the model training time without losing a lot of
information from the original dataset.
Which feature engineering technique should the Data Scientist use to meet the objectives?
A Machine Learning Specialist has created a deep learning neural network model that performs well on the training data but performs poorly on the test data.
Which of the following methods should the Specialist consider using to correct this? (Select THREE.)
A data scientist uses Amazon SageMaker Data Wrangler to obtain a feature summary from a dataset that the data scientist imported from Amazon S3. The data scientist notices that the prediction power for a dataset feature has a score of 1.
What is the cause of the score?
A media company wants to create a solution that identifies celebrities in pictures that users upload. The company also wants to identify the IP address and the timestamp details from the users so the company can prevent users from uploading pictures from unauthorized locations.
Which solution will meet these requirements with LEAST development effort?
A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.
Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)
A data scientist is training a large PyTorch model by using Amazon SageMaker. It takes 10 hours on average to train the model on GPU instances. The data scientist suspects that training is not converging and that
resource utilization is not optimal.
What should the data scientist do to identify and address training issues with the LEAST development effort?
A Machine Learning Specialist wants to bring a custom algorithm to Amazon SageMaker. The Specialist
implements the algorithm in a Docker container supported by Amazon SageMaker.
How should the Specialist package the Docker container so that Amazon SageMaker can launch the training
correctly?