Summer Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: exc65

A company is using a shared services VPC with two domain controllers. The domain controllers are deployed in the company's private subnets. The company is deploying a new application into a new VPC in the account. The application will be deployed onto an Amazon EC2 for Windows Server instance in the new VPC. The instance must join the existing Windows domain that is supported by the domain controllers in the shared services VPC.

A transit gateway is attached to both the shared services VPC and the new VPC. The company has updated the route tables for the transit gateway, the shared services VPC, and the new VPC. The security groups for the domain controllers and the instance are updated and allow traffic only on the ports that are necessary for domain operations. The instance is unable to join the domain that is hosted on the domain controllers.

Which combination of actions will help identify the cause of this issue with the LEAST operational overhead? (Choose two.)

A.

Use AWS Network Manager to perform a route analysis for the transit gateway network. Specify the existing EC2 instance as the source. Specify the first domain controller as the destination. Repeat the route analysis for the second domain controller.\

B.

Use port mirroring with the existing EC2 instance as the source and another EC2 instance as the target to obtain packet captures of the connection attempts.

C.

Review the VPC flow logs on the shared services VPC and the new VPC.

D.

Issue a ping command from one of the domain controllers to the existing EC2 instance.

E.

Ensure that route propagation is turned off on the shared services VPC.

A software-as-a-service (SaaS) provider hosts its solution on Amazon EC2 instances within a VPC in the AWS Cloud. All of the provider's customers also have their environments in the AWS Cloud.

A recent design meeting revealed that the customers have IP address overlap with the provider's AWS deployment. The customers have stated that they will not share their internal IP addresses and that they do not want to connect to the provider's SaaS service over the internet.

Which combination of steps is part of a solution that meets these requirements? (Choose two.)

A.

Deploy the SaaS service endpoint behind a Network Load Balancer.

B.

Configure an endpoint service, and grant the customers permission to create a connection to the endpoint service.

C.

Deploy the SaaS service endpoint behind an Application Load Balancer.

D.

Configure a VPC peering connection to the customer VPCs. Route traffic through NAT gateways.

E.

Deploy an AWS Transit Gateway, and connect the SaaS VPC to it. Share the transit gateway with the customers. Configure routing on the transit gateway.

A company has an AWS Site-to-Site VPN connection between its office and its VPC. Users report occasional failure of the connection to the application that is hosted inside the VPC. A network engineer discovers in the customer gateway logs that the Internet Key Exchange (IKE) session ends when the connection to the application fails.

What should the network engineer do to bring up the IKE session if the IKE session goes down?

A.

Set the dead peer detection (DPD) timeout action to Clear. Initiate traffic from the VPC to on premises.

B.

Set the dead peer detection (DPD) timeout action to Restart. Initiate traffic from on premises to the VPC.

C.

Set the dead peer detection (DPD) timeout action to None. Initiate traffic from the VPC to on premises.

D.

Set the dead peer detection (DPD) timeout action to Cancel. Initiate traffic from on premises to the VPC.

A company has created three VPCs: a production VPC, a nonproduction VPC, and a shared services VPC. The production VPC and the nonproduction VPC must each have communication with the shared services VPC. There must be no communication between the production VPC and the nonproduction VPC. A transit gateway is deployed to facilitate communication between VPCs.

Which route table configurations on the transit gateway will meet these requirements?

A.

Configure a route table with the production and nonproduction VPC attachments associated with propagated routes for only the shared services VPC. Create an additional route table with only the shared services VPC attachment associated with propagated routes from the production and nonproduction VPCs.

B.

Configure a route table with the production and nonproduction VPC attachments associated with propagated routes for each VPC. Create an additional route table with only the shared services VPC attachment associated with propagated routes from each VPC.

C.

Configure a route table with all the VPC attachments associated with propagated routes for only the shared services VPCreate an additional route table with only the shared services VPC attachment associated with propagated routes from the production and nonproduction VPCs.

D.

Configure a route table with the production and nonproduction VPC attachments associated with propagated routes disabled. Create an additional route table with only the shared services VPC attachment associated with propagated routes from the production and nonproduction VPCs.

A company has deployed an application in which the front end of the application communicates with the backend instances through a Network Load Balancer (NLB) in the same VPC. The application is highly available across two Availability Zones. The company wants to limit the amount of traffic that travels across the Availability Zones. Traffic from the front end of the application must stay in the same Availability Zone unless there is no healthy target in that Availability Zone behind the NLB. If there is no healthy target in the same Availability Zone, traffic must be sent to the other Availability Zone.

Which solution will meet these requirements?

A.

Create a private hosted zone with weighted routing for each Availability Zone. Point the primary record to the local Availability Zone NLB DNS record. Point the secondary record to the Regional NLB DNS record. Configure the front end of the application to perform DNS lookups on the local private hosted zone records.

B.

Turn off cross-zone load balancing on the NLB. Configure the front end of the application to perform DNS lookups on the local Availability Zone NLB DNS record.

C.

Create a private hosted zone. Create a failover record for each Availability Zone. For each failover record, point the primary record to the local Availability Zone NLB DNS record and point the secondary record to the Regional NLB DNS record. Configure the front end of the application to perform DNS lookups on the local private hosted zone records.

D.

Enable sticky sessions (session affinity) so that the NLB can bind a user’s session to targets in the same Availability Zone.

A marketing company is using hybrid infrastructure through AWS Direct Connect links and a software-defined wide area network (SD-WAN) overlay to connect its branch offices. The company connects multiple VPCs to a third-party SD-WAN appliance transit VPC within the same account by using AWS Site-to-Site VPNs.

The company is planning to connect more VPCs to the SD-WAN appliance transit VPC. However, the company faces challenges of scalability, route table limitations, and higher costs with the existing architecture. A network engineer must design a solution to resolve these issues and remove dependencies.

Which solution will meet these requirements with the LEAST amount of operational overhead?

A.

Configure a transit gateway to attach the VPCs. Configure a Site-to-Site VPN connection between the transit gateway and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

B.

Configure a transit gateway to attach the VPCs. Configure a transit gateway Connect attachment for the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

C.

Configure a transit gateway to attach the VPCs. Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

D.

Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

A company's development team has created a new product recommendation web service. The web service is hosted in a VPC with a CIDR block of 192.168.224.0/19. The company has deployed the web service on Amazon EC2 instances and has configured an Auto Scaling group as the target of a Network Load Balancer (NLB).

The company wants to perform testing to determine whether users who receive product recommendations spend more money than users who do not receive product recommendations. The company has a big sales event in 5 days and needs to integrate its existing production environment with the recommendation engine by then. The existing production environment is hosted in a VPC with a CIDR block of 192.168.128 0/17.

A network engineer must integrate the systems by designing a solution that results in the least possible disruption to the existing environments.

Which solution will meet these requirements?

A.

Create a VPC peering connection between the web service VPC and the existing production VPC. Add a routing rule to the appropriate route table to allow data to flow to 192.168.224.0/19from the existing production environment and to flow to 192.168.128.0/17 from the web service environment. Configure the relevant security groups and ACLs to allow the systems to communicate.

B.

Ask the development team of the web service to redeploy the web service into the production VPC and integrate the systems there.

C.

Create a VPC endpoint service. Associate the VPC endpoint service with the NLB for the web service. Create an interface VPC endpoint for the web service in the existing production VPC.

D.

Create a transit gateway in the existing production environment. Create attachments to the production VPC and the web service VPC. Configure appropriate routing rules in the transit gateway and VPC route tables for 192.168.224.0/19 and 192.168.128.0/17. Configure the relevant security groups and ACLs to allow the systems to communicate.

A company has set up a NAT gateway in a single Availability Zone (AZ1) in a VPC (VPC1) to access the internet from Amazon EC2 workloads in the VPC. The EC2 workloads are running in private subnets in three Availability Zones (AZ1, AZ2, AZ3). The route table for each subnet is configured to use the NAT gateway to access the internet.

Recently during an outage, internet access stopped working for the EC2 workloads because of the NAT gateway's unavailability. A network engineer must implement a solution to remove the single point of failure from the architecture and provide built-in redundancy.

Which solution will meet these requirements?

A.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table for private subnets to route traffic to the virtual IP addresses of the two NAT gateways.

B.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table to point the AZ2 private subnets to the NAT gateway in AZ2. Configure the same route table to point the AZ3 private subnets to the NAT gateway in AZ3.

C.

Create a second VPC (VPC2). Set up two NAT gateways. Place each NAT gateway in a different VPC (VPC1 and VPC2) and in the same Availability Zone (AZ2). Configure a route table in VPC1 to point the AZ2 private subnets to one NAT gateway. Configure a route table in VPC2 to point the AZ2 private subnets to the second NAT gateway.

D.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table to point the AZ2 private subnets to the NAT gateway in AZ2. Configure a second route table to point the AZ3 private subnets to the NAT gateway in AZ3.

An ecommerce company is hosting a web application on Amazon EC2 instances to handle continuously changing customer demand. The EC2 instances are part of an Auto Scaling group. The company wants to implement a solution to distribute traffic from customers to the EC2 instances. The company must encrypt all traffic at all stages between the customers and the application servers. No decryption at intermediate points is allowed.

Which solution will meet these requirements?

A.

Create an Application Load Balancer (ALB). Add an HTTPS listener to the ALB. Configure the Auto Scaling group to register instances with the ALB's target group.

B.

Create an Amazon CloudFront distribution. Configure the distribution with a custom SSL/TLS certificate. Set the Auto Scaling group as the distribution's origin.

C.

Create a Network Load Balancer (NLB). Add a TCP listener to the NLB. Configure the Auto Scaling group to register instances with the NLB's target group.

D.

Create a Gateway Load Balancer (GLB). Configure the Auto Scaling group to register instances with the GLB's target group.

A company has developed a new web application on AWS. The application runs on Amazon Elastic Container Service (Amazon ECS) on AWS Fargate behind an Application Load Balancer (ALB) in the us-east-1 Region. The application uses Amazon Route 53 to host the DNS records for the domain. The content that is served from the website is mostly static images and files that are not updated frequently. Most of the traffic to the website from end users will originate from the United States. Some traffic will originate from Canada and Europe.

A network engineer needs to design a solution that will reduce latency for end users at the lowest cost. The solution also must ensure that all traffic is encrypted in transit until the traffic reaches the ALB.

Which solution will meet these requirements?

A.

Configure the ALB to use an AWS Global Accelerator accelerator In us-east-1. Create a secure HTTPS listener. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the DNS name that is assigned to the accelerator for the ALB.

B.

Configure the ALB to use a secure HTTPS listener Create an Amazon CloudFront distribution. Set the origin domain name to point to the DNS record that is assigned to the ALB. Configure the CloudFront distribution to use an SSL certificate. Set all behaviors to force HTTPS. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the DNS name that is assigned to the ALB.

C.

Configure the ALB to use a secure HTTPS listener. Create an Amazon CloudFront distribution. Set the origin domain name to point to the DNS record that is assigned to the ALB. Configure the CloudFront distribution to use an SSL certificate and redirect HTTP to HTTPS. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the CloudFront distribution.

D.

Configure the ALB to use an AWS Global Accelerator accelerator in us-east-1. Create a secure HTTPS listener. Create a second application stack on Amazon ECS on Fargate in the eu-west-1 Region Create another secure HTTPS listener. Create an alias record inAmazon Route 53 for the custom domain name. Configure the alias record to use a latency-based routing policy to route to the DNS name that is assigned to the accelerator for the ALBs.