Spring Sale Special - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sntaclus

A company needs to improve the security of its web-based application on AWS. The application uses Amazon CloudFront with two custom origins. The first custom origin routes requests to an Amazon API Gateway HTTP API. The second custom origin routes traffic to an Application Load Balancer (ALB) The application integrates with an OpenlD Connect (OIDC) identity provider (IdP) for user management.

A security audit shows that a JSON Web Token (JWT) authorizer provides access to the API The security audit also shows that the ALB accepts requests from unauthenticated users

A solutions architect must design a solution to ensure that all backend services respond to only authenticated users

Which solution will meet this requirement?

A.

Configure the ALB to enforce authentication and authorization by integrating the ALB with the IdP Allow only authenticated users to access the backend services

B.

Modify the CloudFront configuration to use signed URLs Implement a permissive signing policy that allows any request to access the backend services

C.

Create an AWS WAF web ACL that filters out unauthenticated requests at the ALB level. Allow only authenticated traffic to reach the backend services.

D.

Enable AWS CloudTrail to log all requests that come to the ALB Create an AWS Lambda function to analyze the togs and block any requests that come from unauthenticated users.

A company has applications in an AWS account that is named Source. The account is in an organization in AWS Organizations. One of the applications uses AWS Lambda functions and store’s inventory data in an Amazon Aurora database. The application deploys the Lambda functions by using a deployment package. The company has configured automated backups for Aurora.

The company wants to migrate the Lambda functions and the Aurora database to a new AWS account that is named Target. The application processes critical data, so the company must minimize downtime.

Which solution will meet these requirements?

A.

Download the Lambda function deployment package from the Source account. Use the deployment package and create new Lambda functions in the Target account. Share the automated Aurora DB cluster snapshot with the Target account.

B.

Download the Lambda function deployment package from the Source account. Use the deployment package and create new Lambda functions in the Target account Share the Aurora DB cluster with the Target account by using AWS Resource Access Manager {AWS RAM). Grant the Target account permission to clone the Aurora DB cluster.

C.

Use AWS Resource Access Manager (AWS RAM) to share the Lambda functions and the Aurora DB cluster with the Target account. Grant the Target account permission to clone the Aurora DB cluster.

D.

Use AWS Resource Access Manager (AWS RAM) to share the Lambda functions with the Target account. Share the automated Aurora DB cluster snapshot with the Target account.

A company has an online learning platform that teaches data science. The platform uses the AWS Cloud to provision on-demand lab environments for its students. Each student receives a dedicated AWS account for a short time. Students need access to ml.p2.xlarge instances to run a single Amazon SageMaker machine learning training job and to deploy the inference endpoint. Account provisioning is automated. The accounts are members of an organization in AWS Organizations with all features enabled. The accounts must be provisioned in the ap-southeast-2 Region. The default resource usage quotas are not sufficient for the accounts. A solutions architect must enhance the account provisioning process to include automated quota increases. Which solution will meet these requirements?

A.

Create a quota request template in the us-east-1 Region in the organization's management account. Enable template association. Add a quota for SageMaker in ap-southeast-2 for ml.p2.xlarge training job usage. Set the desired quota to 1. Add a quota for SageMaker in ap-southeast-2 for ml.p2.xlarge endpoint usage. Set the desired quota to 1.

B.

Create a quota request template in the us-east-1 Region in the organization's management account. Enable template association. Add a quota for SageMaker in ap-southeast-2 for ml.p2.xlarge training warm pool usage. Set the desired quota to 2.

C.

Create a quota request template in ap-southeast-2 in the organization's management account. Enable template association. Add a quota for SageMaker in the us-east-1 Region for ml.p2.xlarge training job usage. Set the desired quota to 1. Add a quota for SageMaker in us-east-1 for ml.p2.xlarge endpoint usage. Set the desired quota to 1.

D.

Create a quota request template in ap-southeast-2 in the organization's management account. Enable template association. Add a quota for SageMaker in the us-east-1 Region for ml.p2.xlarge training warm pool usage. Set the desired quota to 2.

A company is running an application in the AWS Cloud. The company's security team must approve the creation of all new IAM users. When a new IAM user is created, all access for the user must be removed automatically. The security team must then receive a notification to approve the user. The company has a multi-Region AWS CloudTrail trail In the AWS account.

Which combination of steps will meet these requirements? (Select THREE.)

A.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule. Define a pattern with the detail-type value set to AWS API Call via CloudTrail and an eventName of CreateUser.

B.

Configure CloudTrail to send a notification for the CreateUser event to an Amazon Simple Notification Service (Amazon SNS) topic.

C.

Invoke a container that runs in Amazon Elastic Container Service (Amazon ECS) with AWS Fargate technology to remove access

D.

Invoke an AWS Step Functions state machine to remove access.

E.

Use Amazon Simple Notification Service (Amazon SNS) to notify the security team.

F.

Use Amazon Pinpoint to notify the security team.

A company is migrating an on-premises application and a MySQL database to AWS. The application processes highly sensitive data, and new data is constantly updated in the database. The data must not be transferred over the internet. The company also must encrypt the data in transit and at rest.

The database is 5 TB in size. The company already has created the database schema in an Amazon RDS for MySQL DB instance. The company has set up a 1 Gbps AWS Direct Connect connection to AWS. The company also has set up a public VIF and a private VIF. A solutions architect needs to design a solution that will migrate the data to AWS with the least possible downtime.

Which solution will meet these requirements?

A.

Perform a database backup. Copy the backup files to an AWS Snowball Edge Storage Optimized device. Import the backup to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

B.

Use AWS Database Migration Service (AWS DMS) to migrate the data to AWS. Create a DMS replication instance in a private subnet. Create VPC endpoints for AWS DMS. Configure a DMS task to copy data from the on-premises database to the DB instance by using full load plus change data capture (CDC). Use the AWS Key Management Service (AWS KMS) default key for encryption at rest. Use TLS for encryption in transit.

C.

Perform a database backup. Use AWS DataSync to transfer the backup files to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

D.

Use Amazon S3 File Gateway. Set up a private connection to Amazon S3 by using AWS PrivateLink. Perform a database backup. Copy the backup files to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

A company needs to optimize the cost of its application on AWS. The application uses AWS Lambda functions and Amazon ECS containers that run on AWS Fargate. The application is write-heavy and stores data in an Amazon Aurora MySQL database.

The load on the application is not consistent. The application experiences long periods of no usage, followed by sudden and significant increases and decreases in traffic. The database runs on a memory optimized DB instance and has high utilization during peak times. A solutions architect must design a solution that can scale to handle the changes in traffic.

Which solution will meet these requirements MOST cost-effectively?

A.

Add additional read replicas to the database. Purchase Instance Savings Plans and reserved DB instances for Aurora.

B.

Migrate the database to an Aurora DB cluster that has multiple writer instances. Purchase Instance Savings Plans.

C.

Migrate the database to an Aurora global database. Purchase Compute Savings Plans and reserved DB instances for Aurora.

D.

Migrate the database to Aurora Serverless v2. Purchase Compute Savings Plans.

A health insurance company stores personally identifiable information (PII) in an Amazon S3 bucket. The company uses server-side encryption with S3 managed encryption keys (SSE-S3) to encrypt the objects. According to a new requirement, all current and future objects in the S3 bucket must be encrypted by keys that the company’s security team manages. The S3 bucket does not have versioning enabled.

Which solution will meet these requirements?

A.

In the S3 bucket properties, change the default encryption to SSE-S3 with a customer managed key. Use the AWS CLI to re-upload all objects in the S3 bucket. Set an S3 bucket policy to deny unencrypted PutObject requests.

B.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to deny unencrypted PutObject requests. Use the AWS CLI to re-upload all objects in the S3 bucket.

C.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to automatically encrypt objects on GetObject and PutObject requests.

D.

In the S3 bucket properties, change the default encryption to AES-256 with a customer managed key. Attach a policy to deny unencrypted PutObject requests to any entities that access the S3 bucket. Use the AWS CLI to re-upload all objects in the S3 bucket.

A company has a solution that analyzes weather data from thousands of weather stations. The weather stations send the data over an Amazon API Gateway REST API that has an AWS Lambda function integration. The Lambda function calls a third-party service for data pre-processing. The third-party service gets overloadedand fails the pre-processing, causing a loss of data.

A solutions architect must improve the resiliency of the solution. The solutions architect must ensure that no data is lost and that data can be processed later if failures occur.

What should the solutions architect do to meet these requirements?

A.

Create an Amazon Simple Queue Service (Amazon SQS) queue. Configure the queue as the dead-letter queue for the API.

B.

Create two Amazon Simple Queue Service (Amazon SQS) queues: a primary queue and a secondary queue. Configure the secondary queue as the dead-letter queue for the primary queue. Update the API to use a new integration to the primary queue. Configure the Lambda function as the invocation target for the primary queue.

C.

Create two Amazon EventBridge event buses: a primary event bus and a secondary event bus. Update the API to use a new integration to the primary event bus. Configure an EventBridge rule to react to all events on the primary event bus. Specify the Lambda function as the target of the rule. Configure the secondary event bus as the failure destination for the Lambda function.

D.

Create a custom Amazon EventBridge event bus. Configure the event bus as the failure destination for the Lambda function.

A company wants to use an Amazon S3 bucket for its data scientists to store documents. The company uses AWS IAM Identity Center to authenticate users. The company created an IAM Identity Center group for the data scientists.

The company wants to grant the data scientists access to only their specific folders in the S3 bucket. The company also wants to know which documents each data scientist accessed.

Which combination of steps will meet these requirements? (Select TWO.)

A.

Create a custom IAM Identity Center permission set to grant the data scientists access to an S3 bucket prefix that matches their username tag. Use a policy to limit access to paths with the ${aws:PrincipalTag/userName>/" condition.

B.

Create an IAM Identity Center role for the data scientist group that has Amazon S3 read access and write access. Add an S3 bucket policy that allows access to the IAM

Identity Center role.

C.

Configure AWS CloudTrail to log S3 data events and deliver the logs to an S3 bucket. Use Amazon Athena to run queries on the CloudTrail logs in Amazon S3.

D.

Configure AWS CloudTrail to log S3 management events to Amazon CloudWatch. Use the Amazon Athena CloudWatch connector to query the logs.

E.

Enable S3 access logging to the EMR File System (EMRFS). Create an AWS Glue job to run queries on the access log data in EMRFS.

A solutions architect needs to migrate an on-premises legacy application to AWS. The application runs on two servers behind a bad balancer. The application requires a license file that is associated with the MAC address of the server's network adapter. It takes the software vendor 12 hours to send new license files. The application also uses configuration files with a static IP address to access a database host names are not supported.

Given these requirements. which combination of steps should be taken to implement highly available architecture for the application servers in AWS? (Select TWO.)

A.

Create a pool of ENIs. Request license files from the vendor for the pool, and store the license files in Amazon $3. Create a bootstrap automation script to download a license file and attach the corresponding ENI to anAmazon EC2 instance.

B.

Create a pool of ENIs. Request license files from the vendor for the pool, store the license files on an Amazon EC2 instance. Create an AMI from the instance and use this AMI for all future EC2

C.

Create a bootstrap automation script to request a new license file from the vendor. When the response is received, apply the license file to an Amazon EC2 instance.

D.

Edit the bootstrap automation script to read the database server IP address from the AWS Systems Manager Parameter Store. and inject the value into the local configuration files.

E.

Edit an Amazon EC2 instance to include the database server IP address in the configuration files and re-create the AMI to use for all future EC2 instances.

A solutions architect is designing an application to accept timesheet entries from employees on their mobile devices. Timesheets will be submitted weekly, with most of the submissions occurring on Friday. The data must be stored in a format that allows payroll administrators to run monthly reports The infrastructure must be highly available and scale to match the rate of incoming data and reporting requests.

Which combination of steps meets these requirements while minimizing operational overhead? (Select TWO}

A.

Deploy the application to Amazon EC2 On-Demand Instances with load balancing across multiple Availability Zones. Use scheduled Amazon EC2 Auto Scaling to add capacity before the high volume of submissions on Fridays

B.

Deploy the application in a container using Amazon Elastic Container Service (Amazon ECS) with load balancing across multiple Availability Zones Use scheduled Service Auto Scaling to add capacity before the high volume of submissions on Fridays

C.

Deploy the application front end to an Amazon S3 bucket served by Amazon CloudFront Deploy the application backend using Amazon API Gateway with an AWSLambda proxy integration

D.

Store the timesheet submission data in Amazon Redshift Use Amazon QuickSight to generate the reports using Amazon Redshift as the data source

E.

Store the timesheet submission data in Amazon S3. Use Amazon Athena and Amazon QuickSight to generate the reports using Amazon S3 as the data source.

A company is running a traditional web application on Amazon EC2 instances. The company needsto refactor the application as microservices that run on containers. Separate versions of the application exist in two distinct environments: production and testing. Load for the application is variable, but the minimum load and the maximum load are known. A solutions architect needs to design the updated application with a serverless architecture that minimizes operational complexity.

Which solution will meet these requirements MOST cost-effectively?

A.

Upload the container images to AWS Lambda as functions. Configure a concurrency limit for the associated Lambda functions to handle the expected peak load. Configure two separate Lambda integrations within Amazon API Gateway: one for production and one for testing.

B.

Upload the container images to Amazon Elastic Container Registry (Amazon ECR). Configure two auto scaled Amazon Elastic Container Service (Amazon ECS) clusters with the Fargate launch type to handle the expected load. Deploy tasks from the ECR images. Configure two separate Application Load Balancers to direct traffic to the ECS clusters.

C.

Upload the container images to Amazon Elastic Container Registry (Amazon ECR). Configure two auto scaled Amazon Elastic Kubernetes Service (Amazon EKS) clusters with the Fargate launch type to handle the expected load. Deploy tasks from the ECR images. Configure two separate Application Load Balancers to direct traffic to the EKS clusters.

D.

Upload the container images to AWS Elastic Beanstalk. In Elastic Beanstalk, create separate environments and deployments for production and testing. Configure two separate Application Load Balancers to direct traffic to the Elastic Beanstalk deployments.

A company has several AWS Lambda functions written in Python. The functions are deployed with the .zip package deployment type. The functions use a Lambda layer that contains common libraries and packages in a .zip file. The Lambda .zip packages and the Lambda layer .zip file are stored in an Amazon S3 bucket.

The company must implement automatic scanning of the Lambda functions and the Lambda layer to identify CVEs. A subset of the Lambda functions must receive automated code scans to detect potential data leaks and other vulnerabilities. The code scans must occur only for selected Lambda functions, not all the Lambda functions.

Which combination of actions will meet these requirements? (Select THREE.)

A.

Activate Amazon Inspector. Start automated CVE scans.

B.

Activate Lambda standard scanning and Lambda code scanning in Amazon Inspector.

C.

Enable Amazon GuardDuty. Enable the Lambda Protection feature in GuardDuty.

D.

Enable scanning in the Monitor settings of the Lambda functions that need code scans.

E.

Tag Lambda functions that do not need code scans. In the tag, include a key of InspectorCodeExclusion and a value of LambdaCodeScanning.

F.

Use Amazon Inspector to scan the S3 bucket that contains the Lambda .zip packages and the Lambda layer .zip file for code scans.

An events company runs a ticketing platform on AWS. The company's customers configure and schedule their events on the platform The events result in large increases of traffic to the platform The company knows the date and time of each customer's events

The company runs the platform on an Amazon Elastic Container Service (Amazon ECS) cluster The ECS cluster consists of Amazon EC2 On-Demand Instances that are in an Auto Scaling group. The Auto Scaling group uses a predictive scaling policy

The ECS cluster makes frequent requests to an Amazon S3 bucket to download ticket assets The ECS cluster and the S3 bucket are in the same AWS Region and the same AWS account Traffic between the ECS cluster and the S3 bucket flows across a NAT gateway

The company needs to optimize the cost of the platform without decreasing the platform's availability

Which combination of steps will meet these requirements? (Select TWO)

A.

Create a gateway VPC endpoint for the S3 bucket

B.

Add another ECS capacity provider that uses an Auto Scaling group of Spot Instances Configure the new capacity provider strategy to have the same weight as the existing capacity provider strategy

C.

Create On-Demand Capacity Reservations for the applicable instance type for the time period of the scheduled scaling policies

D.

Enable S3 Transfer Acceleration on the S3 bucket

E.

Replace the predictive scaling policy with scheduled scaling policies for the scheduled events

A company's solutions architect is reviewing a new internally developed application in a sandbox AWS account The application uses an AWS Auto Scaling group of Amazon EC2 instances that have an IAM instance profile attached Part of the application logic creates and accesses secrets from AWS Secrets Manager The company has an AWS Lambda function that calls the application API to test the functionality The company also has created an AWS CloudTrail trail in the account

The application's developer has attached the SecretsManagerReadWnte AWS managed IAM policy to an IAM role The IAM role is associated with the instance profile that is attached to the EC2 instances The solutions architect has invoked the Lambda function for testing

The solutions architect must replace the SecretsManagerReadWnte policy with a new policy that provides least privilege access to the Secrets Manager actions that the application requires

What is the MOST operationally efficient solution that meets these requirements?

A.

Generate a policy based on CloudTrail events for the IAM role Use the generated policy output to create a new IAM policy Use the newly generated IAM policy to replace the SecretsManagerReadWnte policy that is attached to the IAM role

B.

Create an analyzer in AWS Identity and Access Management Access Analyzer Use the IAM role's Access Advisor findings to create a new IAM policy Use the newly created IAM policy to replace the SecretsManagerReadWnte policy that is attached to the IAM role

C.

Use the aws cloudtrail lookup-events AWS CLI command to filter and export CloudTrail events that are related to Secrets Manager Use a new IAM policy that contains the actions from CloudTrail to replace the SecretsManagerReadWnte policy that is attached to the IAM role

D.

Use the IAM policy simulator to generate an IAM policy for the IAM role Use the newly generated IAM policy to replace the SecretsManagerReadWnte policy that is attached to the IAM role