Cyber Monday Sale Special - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sntaclus

A company wants to use AWS services to build an AI assistant for internal company use. The AI assistant's responses must reference internal documentation. The company stores internal documentation as PDF, CSV, and image files.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon SageMaker AI to fine-tune a model.

B.

Use Amazon Bedrock Knowledge Bases to create a knowledge base.

C.

Configure a guardrail in Amazon Bedrock Guardrails.

D.

Select a pre-trained model from Amazon SageMaker JumpStart.

A large retailer receives thousands of customer support inquiries about products every day. The customer support inquiries need to be processed and responded to quickly. The company wants to implement Agents for Amazon Bedrock.

What are the key benefits of using Amazon Bedrock agents that could help this retailer?

A.

Generation of custom foundation models (FMs) to predict customer needs

B.

Automation of repetitive tasks and orchestration of complex workflows

C.

Automatically calling multiple foundation models (FMs) and consolidating the results

D.

Selecting the foundation model (FM) based on predefined criteria and metrics

Which option is an example of unsupervised learning?

A.

A model that groups customers based on their purchase history

B.

A model that classifies images as dogs or cats

C.

A model that predicts a house's price based on various features

D.

A model that learns to play chess by using trial and error

A company has developed an ML model for image classification. The company wants to deploy the model to production so that a web application can use the model.

The company needs to implement a solution to host the model and serve predictions without managing any of the underlying infrastructure.

Which solution will meet these requirements?

A.

Use Amazon SageMaker Serverless Inference to deploy the model.

B.

Use Amazon CloudFront to deploy the model.

C.

Use Amazon API Gateway to host the model and serve predictions.

D.

Use AWS Batch to host the model and serve predictions.

A company wants to generate synthetic data responses for multiple prompts from a large volume of data. The company wants to use an API method to generate the responses. The company does not need to generate the responses immediately.

A.

Input the prompts into the model. Generate responses by using real-time inference.

B.

Use Amazon Bedrock batch inference. Generate responses asynchronously.

C.

Use Amazon Bedrock agents. Build an agent system to process the prompts recursively.

D.

Use AWS Lambda functions to automate the task. Submit one prompt after another and store each response.

A company has built a chatbot that can respond to natural language questions with images. The company wants to ensure that the chatbot does not return inappropriate or unwanted images.

Which solution will meet these requirements?

A.

Implement moderation APIs.

B.

Retrain the model with a general public dataset.

C.

Perform model validation.

D.

Automate user feedback integration.

A company has a foundation model (FM) that was customized by using Amazon Bedrock to answer customer queries about products. The company wants to validate the model's responses to new types of queries. The company needs to upload a new dataset that Amazon Bedrock can use for validation.

Which AWS service meets these requirements?

A.

Amazon S3

B.

Amazon Elastic Block Store (Amazon EBS)

C.

Amazon Elastic File System (Amazon EFS)

D.

AWS Showcone

A loan company is building a generative AI-based solution to offer new applicants discounts based on specific business criteria. The company wants to build and use an AI model responsibly to minimize bias that could negatively affect some customers.

Which actions should the company take to meet these requirements? (Select TWO.)

A.

Detect imbalances or disparities in the data.

B.

Ensure that the model runs frequently.

C.

Evaluate the model's behavior so that the company can provide transparency to stakeholders.

D.

Use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) technique to ensure that the model is 100% accurate.

E.

Ensure that the model's inference time is within the accepted limits.

A financial company is developing a generative AI application for loan approval decisions. The company needs the application output to be responsible and fair.

A.

Review the training data to check for biases. Include data from all demographics in the training data.

B.

Use a deep learning model with many hidden layers.

C.

Keep the model's decision-making process a secret to protect proprietary algorithms.

D.

Continuously monitor the model's performance on a static test dataset.

A company has built a solution by using generative AI. The solution uses large language models (LLMs) to translate training manuals from English into other languages. The company wants to evaluate the accuracy of the solution by examining the text generated for the manuals.

Which model evaluation strategy meets these requirements?

A.

Bilingual Evaluation Understudy (BLEU)

B.

Root mean squared error (RMSE)

C.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

D.

F1 score